AI TECH

룰루랩은 전 세계 200만개 이상의 피부 데이터를 보유하고 있습니다.
전문평가기관 공인 92% 이상의 정확도는 당신의 피부를 누구보다 견고하게 분석해냅니다.

피부 분석 관련 연구를 통해
기술을
발전시키기 위한
룰루랩의 노력입니다.

논문

DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning

2023.07.12
  • 게재일

    2023.06.09

  • 저자

    Cheolwon Lee; Sangwook Yoo; Han Na Lee; Jongha Lee

  • URL

    https://ieeexplore.ieee.org/abstract/document/10147783

  • 논문요약

    This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF ev

Lee, C., Yoo, S., Lee, H. N., & Lee, J. (2023). DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning. IEEE Access. 


Abstract:

This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to subjective criteria and the visual characteristics of erythema’s large variance. We propose DeepErythema, a novel method that uses erythema quantification for MED determination. The proposed method comprises pre-processing methods, a deep learning segmentation model, and post-processing methods. The UV irradiation area pointing is a pre-processing method that accurately detects the inspection area as a UV irradiated port, while Median Gradation Reduction eliminates the gradation that arises due to the digital image collection environment. The deep learning segmentation model parts introduce a methodology for improving performance using various feature extractors and methodologies like SeLu, Reverse Attention Gate, and MixedLoss. For post-processing, Perspective Transform Rectangle Restoration restores a distorted inspection area, and Relative Density Evaluation calculates a density score to consider skin characteristics and tone. We verified that utilizing the DeepErythema score in the UV SPF MED Evaluation (USME) dataset reduced the distribution of human-based MED decisions from 36 to 9 in the experimental results. This reduction in MED decision scope leads to improved consistency in SPF Index grading. Overall, the study contributes to the development of an objective and consistent evaluation method for SPF grading.