AI TECH

룰루랩은 전 세계 200만개 이상의 피부 데이터를 보유하고 있습니다.
전문평가기관 공인 92% 이상의 정확도는 당신의 피부를 누구보다 견고하게 분석해냅니다.

피부 분석 관련 연구를 통해
기술을
발전시키기 위한
룰루랩의 노력입니다.

논문

Progressive Weighted Self-Training Ensemble for Multi-Type Skin Lesion Semantic Segmentation

2023.07.12
  • 게재일

    2022.10.31

  • 저자

    Cheolwon Lee; Sangwook Yoo; Semin Kim; Jongha Lee

  • URL

    https://ieeexplore.ieee.org/abstract/document/9953982

  • 논문요약

    In this study, we propose the Progressive Weighted Self-training Ensemble (PWStE) method that reinforces efficiency of labeled data for multi-type skin lesion semantic segmentation. The generation of multi-type skin lesion labeled data is extremely expens

Lee, C., Yoo, S., Kim, S., & Lee, J. (2022). Progressive weighted self-training ensemble for multi-type skin lesion semantic segmentation. IEEE Access10, 132376-132383. 


Abstract:
In this study, we propose the Progressive Weighted Self-training Ensemble (PWStE) method that reinforces efficiency of labeled data for multi-type skin lesion semantic segmentation. The generation of multi-type skin lesion labeled data is extremely expensive as it should only be performed by dermatologists due to the small pixel variations and irregularly shaped lesion characteristics. For the reason, the reality is that labeled data for skin lesion segmentation model training is absolutely insufficient. The core idea of the proposed PWStE method is to minimize the transfer of uncertainty in the training phase of general SSL by progressively using the pseudo-labeled data referenced in training. The PWStE uses procedures such as Progressive Selector, Ensemble, and Pseudo Labeler designed using conventional Semi-Supervised Learning (SSL) concepts to more accurately generate detailed features of skin lesions from unlabeled data to pseudo-labeled data. We performed ensembles using a combination of models (U-Net, FPN, LinkerNet, PSPNet) and backbones (ResNet50, EfficientNet-b3, InceptionV3, DenseNet121, SE-ResNet101, SE-ResNeXt101). Validation was performed on our Multi-Type Skin Lesion Label Database (MSLD) dataset compared to conventional SSL methods. The experiments have shown that the model trained with PWStE shows similar results to the model of trained the entire label data using the Supervised Learning (SL) method, even with 30% less label data. These results show that our proposed PWStE can increase the efficiency of the given labeled data even in the multi-type skin lesion field.